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Abstract
We study tagged particle diffusion at large packing fractions, for a model of
particles interacting with a generalized Lennard-Jones 2n–n potential, with
large n. The resulting short range potential mimics interactions in colloidal
systems. In agreement with previous calculations for short range potentials, we
observe a diffusivity maximum as a function of temperature at constant density.
By studying the temperature dependence of the configurational entropy—
which we evaluate with two different methods—we show that a configurational
entropy maximum is observed at a temperature close to that of the diffusivity
maximum. Our findings suggest a relation between the dynamics and number
of distinct states for short range potentials.

Advances in colloidal science have been extremely useful in the development of the physics
of liquids, in linking thermodynamic and dynamic properties of systems to the interparticle
interaction potential (for recent reviews see for example references [1, 2]). Almost 20 years
ago it was experimentally shown that hard sphere (HS) particles crystallize [3], a result that
confirmed previous numerical predictions [4]. More recently, experiments showed that when
the packing fraction of the system is higher than ≈0.58 the system is so packed that the HS
particles are arrested in a glass structure, i.e. a glass transition is encountered [3]. Other
important phenomenology emerges when the HS interaction is complemented by a short range
attraction. Colloidal dispersions, with particles interacting with a range of attraction short
compared to the nearest neighbour distances, present new physical phenomena that are not
encountered in atomic and molecular liquids where the attraction is generally long ranged.
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Figure 1. Mean square displacements for different T (from T = 0.26 to 2.0). The inset shows a
sketch of the glass transition lines for short range attractive potentials [14].

For example, the liquid–liquid coexistence becomes metastable with respect to the fluid–
crystal one [5, 6]. One of the most puzzling discoveries is that, if the attraction range is
short enough, the increase of the strength of the attraction (as compared to the thermal energy
kBT ) destabilizes the hard sphere glass, transforming it into a liquid. Further increase of the
attraction over kBT ratio, however, generates an additional glass transition. Thus, colloidal
dispersions with short range attractions are characterized by a non-monotonic dependence on
T of the diffusivity: dynamics slows down not only upon cooling (as is commonly observed
in molecular systems), but also upon heating. In experiments [7–10] and in numerical
simulations [11, 12] two different glasses have been identified [13]: one at low T , called
attractive glass, and one at high T , called repulsive glass (analogous to the HS glass). The
situation is sketched in the inset of figure 1.

The existence of a fluid phase between two glasses suggests that the diffusion coefficient
D exhibits a maximum when the strength of the attraction (or the temperature) is varied along
a path of constant density. According to mode coupling theory, the non-monotonic behaviour
of D results from the competition of two different localization lengths, one associated with the
‘hard core’ and one with the short range attractive bond [14]. In this letter we calculate the T
dependence of the configurational entropy Sconf —a measure of the number of distinct states
of the system—with the aim of providing insights into the physical origin of the D maximum.
A diffusivity maximum emerges also in water on isothermal compression, due to the non-
spherical feature of the potential. In the case of water [15] the locations of the Sconf extrema
correlate with those of D extrema. However for colloidal particles the potential is symmetric
and the nature of the maximum in diffusivity must be related to a different mechanism. It is
then natural to ask whether, in a model which is so different from water, this correlation is still
present.

We use two different routes to determine Sconf : the first one, based on a potential energy
landscape (PEL) investigation, requires an estimate of the vibrational free energy of the system
close to the local minima of the PEL explored (the so-called inherent structures (IS) [16]); the
second one uses a perturbed Hamiltonian [17, 18] and requires a thermodynamic integration
from a known reference state. In both cases, the configurational entropy is calculated as a
difference between total entropy (estimated via thermodynamic integration from the ideal gas
state) and the vibrational entropy. The main results of the present work are:
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(i) the presence of a diffusivity maximum on varying T , confirming that the origin of
this phenomenon does not depend on the specific shape of the short range attractive
potential [11, 12];

(ii) the existence of a maximum in the T dependence of Sconf ;
(iii) the equivalence of the temperatures at which D and Sconf have a maximum.

In the PEL formalism, it is crucial that the interaction potential of the system is continuous,
so that IS can be properly located via a steepest descent minimization of the potential
energy and so that vibrational frequencies can be properly calculated. For this reason we
focus on a continuous model that possesses a steep repulsion and a short ranged attraction,
and that has been proved to reproduce features of the short ranged attractive colloidal
system discussed above [19]. The model of attractive colloid that we study is based on a
generalization of the Lennard-Jones pair potential (LJ 2n–n) proposed by Vliegenthart et al
[19]: VLJn(r) = 4ε

[
(σ/r)2n − (σ/r)n

]
. Unlike [19] we choose an extremely large value of

the exponents, i.e. n = 100. For this value of n, the range of attraction is less than a few
per cent of σ .

We perform standard isothermal molecular dynamics using the Nosé–Hoover thermostat.
The simulated system is composed of 256 particle confined in a cubic box with periodic
boundary conditions. In order to prevent crystallization we study a 50:50 binary mixture with
the following parameters: σAA/σB B = 1.2, σAB = (σAA + σB B)/2, εAA = εB B = εAB . We
use Lennard-Jones units (σAA for length, εAA for energy, τ = (mσ 2

AA/εAA)1/2 for time). We
chose the Boltzmann constant kB = 1; consequently T is measured in units of εAA. A cut and
shift in the pair potential are used (rcut = 1.4). The integration time step is t0 = 7 ×10−5. The
number density investigated is ρ � 1.43, corresponding to φ ≡ πρ(σ 3

AA + σ 3
B B)/12 = 0.59.

Figure 1 shows the time dependence of the mean square displacement, r2(t) =
N−1〈∑N

i=1[ri (t)−ri(0)]2〉, where ri(t) is the position of particle i at time t , for T ranging from
T = 0.26 to 2.0. The results are in agreement with previous findings based on the square-well
model [12]: at high T there is a well defined plateau at about r2 = 2 × 10−2, while at low T
the plateau disappears and one observes a transient sub-diffusive regime before the diffusive
one. It is worth noting that at low T , the transient regime starts around r2 ∼ 10−3, a value
corresponding to the length (squared) of the attractive range of the pair potential. Figure 2(a)
shows D (evaluated from the long time limit behaviour of r2 and rescaled by the quantity

D0 =
√

σ 2
AAT/m) as a function of T . One observes a maximum located at about Tmax = 0.4.

On lowering T , for T < Tmax, D decreases quickly, as the system approaches the attractive
glass line (almost horizontal in the φ–T plane as shown in the inset of figure 1). On increasing
T , for T > Tmax, D decreases smoothly, consistent with the observation that the repulsive
glass line is almost vertical in the φ–T phase diagram.

In analogy with recent studies for atomic and molecular liquids, one can ask whether the
T dependence of D close to arrested states is correlated with the T dependence of Sconf . In
the case of short range models, a test of the correlation between D and Sconf can be exploited
in a more direct way, capitalizing on the presence of the D extremum at T = Tmax. We
try to answer this question, calculating Sconf . We write the total entropy S as a sum of two
contributions: a local vibration entropy Svib and a configurational entropy Sconf that takes into
account the number of distinct local states:

S(T, ρ) = Sconf (T, ρ) + Svib(T, ρ). (1)

This expression, which can be formally derived within the PEL framework [16] and within
the mean field for models of disordered p-spin systems [20], is consistent with the idea that
dynamics is described by two well separated timescales: a fast dynamics describing local



L116 Letter to the Editor

10
-5

10
-4

10
-3

D
 / 

D
0

3.0

4.0

5.0
S

co
nf

(1
)

/N

0.0 0.5 1.0 1.5 2.0
T

2.4

2.6

2.8

3.0

S
co

nf

(2
)

/N

a)

b)

c)

Figure 2. (a) Diffusivity D as a function of T . The value of D is plotted rescaled by

D0 =
√

σ 2
AA T/m. (b) Configurational entropy S(1)

conf per particle obtained using equation (2) to

estimate Svib (PEL approach). (c) S(2)
conf per particle obtained using equation (5) for Svib (perturbed

Hamiltonian approach).

rearrangements of particles within a state and a slow dynamics which accounts for the slow
exploration of different states.

Equation (1) shows that Sconf can be calculated from the knowledge of S and Svib. The
total entropy S can be calculated using thermodynamic integration along paths in the T –ρ

plane. Without going into details, we can write (measuring entropy in units of kB): S(T, ρ) =
S(T0, ρ) +

∫ T
T0

dT
(

3
2 N + ∂U/∂T

)
/T , where U is the potential energy, T0 is a reference

temperature (T0 = 0.4 in our case). S(T0, ρ) describes the path at constant T0 connecting the
ideal gas to the reference state (T0, ρ): S(T0, ρ) = Sid(T0, ρ)+U(T0)/T0 −T −1

0

∫ ρ

0 dρ Pex/ρ
2,

where Sid is the ideal gas contribution (which includes the entropy of mixing, since we
are dealing with a binary mixture), and Pex is the excess pressure. Performing numerical
simulations at 15 different ρ values from 0.036 up to 1.43, we estimated Pex(T0, ρ) and
U(T0, ρ), which, taken together with U(T, ρ), allow us to calculate with sufficiently high
precision the T dependence of S.

In the PEL approach, the vibrational entropy can be calculated from the local curvature
of the PEL around the inherent structures explored [16]. In the harmonic approximation, the
vibrational entropy can be written as

S(1)

vib(T ) =
3N−3∑

i=1

[1 − ln(βh̄ωi)], (2)

where h̄ is Planck’s constant, β = 1/kBT and ωi are the eigenfrequenciesof the Hessian matrix
evaluated at the inherent structure. The T dependence, besides the factor β, is contained in
ωi [21].

Figure 2(b) shows the configurational entropy per particle S(1)

conf/N , calculated as the
difference between the total entropy in equation (1) and the vibrational entropy S(1)

vib given
by equation (2). The T dependence shows a maximum at temperature T (1)

max � 0.6, slightly
higher than that of the diffusivity (Tmax = 0.4). The presence of the maximum is a remarkable
result, indicating a close relationship between D and Sconf , even if a quantitative coincidence
of the peaks seems not to be achieved. The use of the harmonic approximation deserves a
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few remarks: first of all, the steepness of the 2n–n potential reduces the range of T where the
harmonic approximation is valid and,due to the strong T dependence of the anharmonic energy,
prevents us from applying anharmonic corrections; moreover, at high T the confining cage is
controlled not by the short range attractive interaction but by the excluded volume. Caging
emerges from an averaging over many different IS, each with its own distinct environment. At
high T , a state is made of particles moving inside the cage created by the nearest neighbours
and during the exploration of the state the system will traverse many IS that are all connected
together.

To strengthen the observation of the correlation between D and Sconf maxima,
we also calculate Svib using an alternative method, based on a perturbed Hamiltonian
approach [17, 18]5. This method offers the possibility of a direct calculation of the free
energy. One considers a perturbed Hamiltonian:

β H ′ = β H + α

N∑

i=1

(ri − r0,i )
2, (3)

where H is the original Hamiltonian, α is the strength of the perturbation and r0 ≡ {r0,i } is an
equilibrium configuration of the unperturbed system. The free energies F(α) of two systems
with different α values (α∞ and α0) are related by

β F(α∞) = β F(α0) +
∫ α∞

α0

dα′
〈 N∑

i=1

(ri − r0,i )
2

〉

α′
, (4)

where 〈· · ·〉α′ is the canonical average for a specified α′. In the large α∞ → ∞ limit,
β F(α∞) = 3N ln λ + β E0 + 3N

2 ln(α∞/π), where E0 is the potential energy of the reference
configuration r0 and λ is the thermal de Broglie wavelength λ = (2πβh̄2/m)1/2. If a small α0

value can be chosen in such a way that the perturbed system is equivalent to the original system,
but constrained to explore only the phase space of one state,

∫ α∞
α0

dα′ 〈∑N
i=1(ri −r0,i )

2〉α′ allows
us to evaluate the vibrational free energy. Indeed, writing the free energy as a sum of a potential
energy term and of an entropic term, β F(α0) = β E0 + 3N/2 − Svib, the following expression
for the vibrational entropy is derived:

S(2)

vib(T ) =
∫ α∞

α0

dα′
〈 N∑

i=1

(ri − r0,i )
2

〉

α′
− 3N

2
ln

(
α∞λ2

πe

)
, (5)

where e is the Neper number. We use isothermal molecular dynamics with Hamiltonian H ′
to calculate 〈(r − r0)

2〉α at different α and T . We perform averages over 20 different r0,
chosen from equilibrated configurations with an unperturbed Hamiltonian H at temperature
T . Figure 3 shows δr2

α = N−1〈∑N
i=1(ri − r0,i )

2〉α as a function of α for different T . The
dashed line is the (T independent) high α limit, 3/(2α). As discussed above, one has to
choose an α0 value in equation (5) in such a way that the system remains trapped in a given
local state. While at high temperature the data are smooth and the values of δr2

α remain well
below the mean square displacement plateau value (about 2 × 10−2), at low T the behaviour
is quite different: starting from high α, we observe first an approach to a small value 2 × 10−3

(corresponding to more or less the same behaviour in the mean square displacement, even
if less pronounced—see figure 1) and then a departure from it at smaller values of α. We
interpret the former value as indicative of the vibrational motion inside the state. The full
curve in figure 3 is a fitting function for the large α values for the T = 0.26 case6, used to

5 We note that, due to the presence of some misprints in [18], our formulae do not match those reported in that paper.
6 The fitting function is ln δr2

α = A exp [−(α/α∗)β ], where A, α∗ and β are free parameters and the fit is performed
in the range 103 < α < 106.
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define the phase space of a state. We have chosen α0 = 5 × 102 in equation (5) (see the arrow
in figure 3), since this is the smallest α value for which the mean square displacement of the
system lies on the fitting line. Although this is a feature only of the low T data, we have chosen
the same α0 for the estimation of S(2)

vib for all T , in order to obtain a coherent definition of it.
The α∞ has been fixed at 2×106, where δr2

α has reached the asymptotic behaviour (dashed line
in figure 3). Figure 2(c) shows the T dependence of the configurational entropy per particle
S(2)

conf/N , calculated as the difference between the total entropy and S(2)

vib .7 Again one observes
a peak, located at about T (2)

max � 0.5, close to that of the diffusivity. Note that using the same
value of α0 for all the T introduces an underestimation of S(2)

vib , more pronounced for the high
T data. This could have the effect of moving the peak to a lower T value, approaching the
peak value of the diffusivity.

We note that there is a quantitative difference between the values of Sconf obtained by the
two approaches. Underestimation and/or overestimation of Sconf are indeed present in both
methods. Looking at the details, one recognizes that in the PEL method, these can be ascribed
to the harmonic approximation (which worsens on increasing T); for the perturbed Hamiltonian
method, these can arise from the choice of α0 and/or the choice of the function for extrapolating
to low α values. However, the qualitative agreement between the T behaviours is a strong
argument as regards the robustness of the result: the configurational entropy and diffusivity
show a maximum at the same temperature. Our work strongly supports the possibility that in
short range colloidal systems the diffusivity maximum is related to a maximum in the number
of states explored by the system.

We thank G Parisi for useful discussions and for suggesting the use of the perturbed Hamiltonian
method to calculate the vibrational entropy.

7 A constant c = 0.4 has been added to the S(2)
vib , to estimate the error arising from the finite value of α0 used. The

value of c has been calculated as the integral of the extrapolated line for 〈(r − r0)
2〉 at T = 0.26 (see the full curve in

figure 3) from 0 to α0. This gives a correct estimation of S(2)
vib for T = 0.26, and represents a lower bound for the S(2)

vib
at higher T .
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